Choosing a cell viability or cytotoxicity assay from among the many different options available can be a challenging task. Identifying the best cell health assay method to suit your needs requires an understanding of what each assay is measuring as a marker, how the measurement correlates with cell viability and what are the limitations of the assay chemistries. You also have the option to multiplex compatible assays to acquire more data with a statistical advantage.
Choosing a cell health assay can be a challenging task. Here we provide a series of factors to consider when choosing cell-based assays for manual or automated systems.
Which cells, viable or dead, do you want to detect at the end of an experiment? There are cell health assays available that specifically detect the number of living cells (viability assays), the number of dead cells (cytotoxicity assays) and for assessing the mechanism of cell death (apoptosis assays). If the information sought is simply to confirm whether there is a difference between “no treatment” negative controls and “toxin treatment” of experimental wells, the choice between measuring the number of viable cells or the number of dead cells may be irrelevant. However, if more detailed information on the mechanism of cell death is being sought, the duration of exposure to toxin, the concentration of the test compound, and the choice of the assay endpoint become critical (1). Explore the following considerations to help you determine what you want to measure and which assays can help you.
The species of origin and cell types used in cell health studies are often dictated by specific project goals or the drug target that is being investigated. Regardless of the model system chosen, establishing a consistent and reproducible procedure for culturing cells and setting up assay plates is important. Variation in the number of cells per well or equilibration period prior to performing the assay may affect cellular physiology. Maintenance and handling of stock cell cultures at each step of the process should be standardized and validated for consistency. In addition, be sure to use known positive and negative controls throughout the course of the experiment to establish a general understanding of the physiological condition of the cells. Because the nature of the sample can vary depending on cell type and whether it is a 2D or 3D culture model, the assay procedure should be validated for each culture model system. A model system that requires use of smaller cell numbers, such as with primary cells or other limited cell types, will require an assay with increased sensitivity.
Cells in culture are only a model system and are different than cells in their normal in vivo environment. Many researchers are now using 3D cell cultures to more closely mimic in vivo conditions. Instead of growing in a monolayer on a plate surface, cells in 3D culture grow within a conformation that allows them to interact with each other, forming cell:cell connections. This added complexity can present challenges for experimental design when performing cell based assays because assay reagents may have difficulty reaching the center of large microtissues, and lytic assays may not be able to disrupt all cells within the 3D system. Assays may need to be optimized for 3D systems, by reformulating reagents with stronger detergents and incorporating mechanical disruption and longer incubation times. Colorimetric assays, such as MTT, are not optimal for use with 3D cell cultures because they have limited ability to penetrate multiple layers of cells.
The CellTiter-Glo® 3D Cell Viability Assay (Cat.# G9681) is specifically designed for determining cell viability in 3D culture models. The assay reagent has increased lytic capacity—allowing better penetration of large spheroid samples resulting in more accurate determination of viability compared to other assay methods. The CellTiter-Glo® 3D Assay Reagent measures ATP as an indicator of viability and generates a luminescent readout that is much more sensitive than colorimetric or fluorescence-based methods.
To measure cytotoxicity of a compound, the LDH-Glo™ Cytotoxicity Assay (Cat.# J2380) is ideal for use with 3D culture models. Instead of relying on penetration of the cell membrane, the assay measures LDH release from dead cells into the medium. The assay requires only small volumes of medium (2–5µl) to be removed, allowing for repeated sampling over time. This conserves microtissues and maintains remaining viable cells, allowing you to use samples for additional downstream applications, with other assays, or for nucleic acid analysis to acquire more data using the same samples.
Matching the detected assay marker to the information you need is vital to choosing the appropriate cell health assay. A basic understanding of the changes that occur during different mechanisms of cell death will help you decide which assay to choose. Figure 9 shows a simplified example illustrating chronological changes occurring during apoptosis and necrosis and the results that would be expected using assays that measure different markers.
Cells undergoing necrosis typically undergo rapid swelling, lose membrane integrity, shut down metabolism and release their cytoplasmic contents into the surrounding culture medium. Cells undergoing rapid necrosis in vitro do not have sufficient time or energy to activate apoptotic machinery and will not express apoptotic markers.
Cultured cells that are undergoing apoptosis in vitro eventually undergo secondary necrosis. After extended incubation, apoptotic cells ultimately shut down metabolism, activate caspases, flip phosphatidylserine (PS) to the outer membrane, lose membrane integrity and release their cytoplasmic contents into the culture medium. Markers of apoptosis such as caspase activity or PS exposure on the cell surface may be present only transiently. Therefore, to determine the primary mechanism of cell death, understanding the kinetics of the cell death process in your model system is critical. To avoid missing a critical time point, you may want to choose a nonlytic real-time assay, such as the RealTime-Glo™ Annexin V Apoptosis and Necrosis Assay (Cat.# JA1011), that allows repeated readings from a single assay well over time.
Live-cell kinetic assays are detection reagents that allow the same sample well to be repeatedly measured over multiple time points. This saves you time and effort, enabling you to collect more informative data in real time. If you need to perform time and dose response experiments to determine the onset or mechanism of toxicity of a drug, you’ll likely benefit from a real-time assay. Especially if you are using limited or precious cell samples, it is critical to get as much data as possible out of your sample. Promega provides a portfolio of assays capable of live-cell kinetic cell health determination.
The RealTime-Glo™ MT Cell Viability Assay (Cat.# G9711) allows you to monitor cell viability continually in the same sample well out to 72 hours depending on cell number. The assay measures the reducing potential of viable cells and is ATP-independent, providing an orthogonal method for viability determination. The RealTime-Glo™ Annexin V Apoptosis and Necrosis Assay (Cat.# JA1011) is a plate reader-based method that measures the real-time exposure of phosphatidylserine (PS) on the outer leaflet of cell membranes during the apoptotic process. The combination and timing of luminescent (apoptotic) and fluorescent (necrotic) signals is used to differentiate secondary necrosis from necrosis caused by other cytotoxic events. The CellTox™ Green Cytotoxicity Assay (Cat.# G8741) uses a dye that produces a fluorescent signal when bound to DNA in membrane-compromised cells. This assay can be applied directly to cells at seeding or when treating with a test compound at any incubation time point, allowing real-time kinetic measurement of the onset of cytotoxicity.
Because these assays are non-toxic and non-lytic, the remaining viable cells remain intact for additional downstream applications resulting in more data per sample.